과학자들은 단기간에 많은 에너지를 생성할 수 있는 새로운 유형의 레이저를 개발했으며 이는 안과 및 심장 수술 또는 미세 재료 공학에 잠재적으로 응용할 수 있습니다. 시드니 대학의 광자 광학 과학 연구소 소장인 Martin De Steck 교수는 "이 레이저의 특징은 펄스 지속 시간이 1조분의 1초 미만으로 줄어들 때 에너지도 " 순간 "이는 피크에서 짧고 강력한 펄스가 필요한 재료를 처리하는 데 이상적인 후보입니다.
초장거리 무중계 광전송은 항상 광섬유 통신 분야의 연구 핫스팟이었습니다. 새로운 광증폭 기술의 탐구는 논-릴레이 광전송의 거리를 더욱 확장하기 위한 핵심 과학적 문제입니다.
라만 이득을 기반으로 한 무작위로 분포된 피드백 파이버 레이저는 다양한 환경 조건에서 출력 스펙트럼이 넓고 안정적인 것으로 확인되었으며 하프 오픈 캐비티 DFB-RFL의 레이저 스펙트럼 위치와 대역폭은 추가 포인트 피드백과 동일합니다. 장치 스펙트럼은 상관관계가 높습니다. 포인트 미러(FBG와 같은)의 스펙트럼 특성이 외부 환경에 따라 변경되면 파이버 랜덤 레이저의 레이저 스펙트럼도 변경됩니다. 이 원리를 기반으로 파이버 랜덤 레이저를 사용하여 초장거리 점 감지 기능을 실현할 수 있습니다.
개별 광섬유 증폭 기술과 비교하여 DRA(분산 라만 증폭) 기술은 잡음 지수, 비선형 손상, 이득 대역폭 등과 같은 여러 측면에서 분명한 이점을 나타냈으며 광섬유 통신 및 감지 분야에서 이점을 얻었습니다. 널리 사용됩니다. 고차 DRA는 준 무손실 광 전송(즉, 광 신호 대 잡음비와 비선형 손상의 최상의 균형)을 달성하기 위해 링크 깊숙이 게인을 만들고 광섬유 전송/광 전송의 전반적인 균형을 크게 향상시킬 수 있습니다. 감지. 기존 하이엔드 DRA에 비해 초장섬유 레이저 기반의 DRA는 시스템 구조를 단순화하고 게인 클램프 제작이 가능하다는 장점을 갖고 있어 활용 가능성이 높다. 그러나 이 증폭 방식은 여전히 장거리 광섬유 전송/감지에 대한 적용이 제한되는 병목 현상에 직면해 있습니다.
고출력 초고속 레이저는 짧은 펄스 지속 시간과 피크 출력으로 인해 널리 사용됩니다. 초고속 레이저는 재료 가공 응용 분야, 의료용 섬유 레이저, 현미경 검사 및 기타 분야에 사용됩니다.
Copyright @ 2020 Shenzhen Box Optronics Technology Co., Ltd. - 중국 광섬유 모듈, 광섬유 결합 레이저 제조 업체, 레이저 부품 공급 업체 판권 소유.